Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens.
نویسندگان
چکیده
The proteolytic activity of Butyrivibrio fibrisolvens, a ubiquitously distributed bacterial species in the gastrointestinal tracts of ruminants and other mammals, was characterized. The relative proteolytic activity (micrograms of azocasein degraded per hour per milligram of protein) varied greatly with the strain: 0 to 1 for strains D1, D16f, E21C, and X6C61; 7 to 15 for strains IL631, NOR37, S2, LM8/1B, and X10C34; and 90 to 590 for strains 12, 49 H17C, CF4c, CF3, CF1B, and R28. The activity levels of the last group of strains were equal to or greater than those found with Bacteroides amylophilus or Bacteroides ruminicola. With the exception of strain R28 activity, 90% or more of the proteolytic activity was associated with the culture fluid and not the cells. Strain 49 produced proteolytic activity constitutively, but the level of activity (units per milligram of protein) was modulated by growth parameters. With various carbohydrates added to the growth medium, the proteolytic activities of strain 49 were positively correlated with the growth rate. However, when the growth rate varied with the use of different nitrogen sources, a similar correlation was not found. The highest activity level was observed with Casamino Acids (1 g/liter), but this level was reduced by ca. 70% with Trypticase (BBL Microbiology Systems, Cockeysville, Md.) or casein (1 g/liter) and by 85% with ammonium chloride (10 mM) as the sole nitrogen source. The addition of ammonium chloride (1 to 10 mM) to media with low levels of Casamino Acids or Trypticase resulted in lower proteolytic activities but not as low as seen when the complex nitrogen sources were increased to high levels (20 g/liter).(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Cloning, sequencing, and expression of a xylanase gene from the anaerobic ruminal bacterium Butyrivibrio fibrisolvens.
A gene coding for xylanase activity, xynA, from the anaerobic ruminal bacterium Butyrivibrio fibrisolvens 49 was cloned into Escherichia coli JM83 by using plasmid pUC19. The gene was located on a 2.3-kilobase (kb) DNA insert composed of two adjacent EcoRI fragments of 1.65 and 0.65 kb. Expression of xylanase activity required parts of both EcoRI segments. In E. coli, the cloned xylanase enzyme...
متن کاملDegradation and utilization of xylan by the ruminal bacteria Butyrivibrio fibrisolvens and Selenomonas ruminantium.
The cross-feeding of xyland hydrolysis products between the xylanolytic bacterium Butyrivibrio fibrisolvens H17c and the xylooligosaccharide-fermenting bacterium Selenomonas ruminantium GA192 was investigated. Cultures were grown anaerobically in complex medium containing oat spelt xylan, and the digestion of xylan and the generation and subsequent utilization of xylooligosaccharide intermediat...
متن کاملDistribution and evolution of the xylanase genes xynA and xynB and their homologues in strains of Butyrivibrio fibrisolvens.
The ruminal bacterium Butyrivibrio fibrisolvens is being engineered by the introduction of heterologous xylanase genes in an attempt to improve the utilization of plant material in ruminants. However, relatively little is known about the diversity and distribution of the native xylanase genes in strains of B. fibrisolvens. In order to identify the most appropriate hosts for such modifications, ...
متن کاملPreservation of ruminal bacterium capsules by using lysine in the electron microscopy fixative.
Ruminal bacteria from axenic cultures of Ruminococcus flavefaciens FD1, Butyrivibrio fibrisolvens 49, and bacterial types from the ruminal ecosystem that were fixed with 50 mM lysine (l-lysine hydrochloride) added to glutaraldehyde had better-preserved capsules and extracellular material than bacteria fixed without lysine.
متن کاملIncreased expressionofamolecular chaperoneGroEL in response tounsaturated fattyacidsby thebiohydrogenating ruminal bacterium, Butyrivibrio¢brisolvens
Butyrivibrio fibrisolvens is the most active bacterial species in the biohydrogenation of polyunsaturated fatty acids (PUFA) in the rumen. It needs to remove the unsaturated bonds in order to detoxify the PUFA to enable the growth of the bacterium. Here, we investigated the response of cell membrane-associated proteins in B. fibrisolvens to growth in the presence of PUFA. Numerous changes were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 52 1 شماره
صفحات -
تاریخ انتشار 1986